C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Differential Geometry

Subject Code: 5SC02DIG1		Branch: M.Sc. (Mathematics)	
Semester: 2	Date: 23/04/2018	Time: 10:30 To 01:30	Marks: 70

Instructions:

Q-1

Q-2

Q-2

Q-3

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the Following questions

SECTION – I

(07)

a	State Four vertex theorem.	(01)
b c	Is the curve $\bar{r}(t) = (t, \cos ht)$ for $t \in R$ regular? Check whether the curve $\bar{r}(t) = (\frac{4}{5}cost, 1 - \sin t, -\frac{3}{5}cost)$ is planer curve or	(02) (02)
d	not. . State Frenet – Serret formula.	(02)
a	Attempt all questions If \bar{r} is a regular curve in R^3 then prove that the curvature $k = \frac{\ \ddot{r} \times \dot{r}\ }{\ \dot{r}\ ^3}$	(14) (06)
b) Let $\bar{r}(t)$: $(a, b) \to R^3$ be a regular curve. Show that $\ \bar{r}(t)\ $ is non – zero constant if and only if $\bar{r}(t) \perp \dot{\bar{r}}(t) \forall t$.	(04)
c	Compute the arc length of the curve $\bar{r}(t) = (e^{kt} \cos t, e^{kt} \sin t)$ starting at the point (1,0).	(04)
	OR	
	Attempt all questions	(14)
a	Compute curvature and torsion of the curve $\bar{r}(t) = (e^t \cos t, e^t \sin t, e^t)$.	(06)
b) Let \bar{r} be a regular curve in R^3 with nowhere vanishing curvature. If \bar{r} is planar then prove that the torsion of \bar{r} is identically zero.	(04)
c	Show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a convex curve.	(04)
a	Attempt all questions Let \overline{r} : $(a, b) \rightarrow R^3$ be a regular curve with nowhere vanishing curvature. Then	(14) (06)

		prove that the torsion τ of \bar{r} is $\frac{(\bar{r} \times \bar{r}) \cdot \bar{r}}{\bar{r}}$	
		$\left\ \dot{r} \times \ddot{r} \right\ ^2$	
	b)	Find first fundamental form of the surface	(05)
		$\sigma(u,v) = (\cos u \cos v, \cos u \sin v, \sin u)$	
	c)	In usual notation, prove that f^* is a symmetric bilinear map.	(03)
		OR	
0-3	a)	State and prove Wirtinger's inequality.	(07)
C	b)	State and prove Iso-Perimetric inequality.	(07)
		SECTION – II	
Q-4		Define the following questions	(07)
	a.	Conformal map.	(01)
	b.	Umbilical point	(01)
	c.	Geodesics.	(01)
	d.	Unit normal to surface.	(02)
	e.	Christoffel's symbol of second kind.	(02)
Q-5		Attempt all questions	(14)
	a)	State and prove Euler's theorem.	(05)
	b)	Let $\phi: U \to V$ be a diffeomorphism between open subsets of R^2 . Let $\phi(u, v) = (f(u, v), g(u, v))$ where f and g are smooth functions. Prove that ϕ is conformal iff $(f_u = g_v \& f_v = -g_u)$ or $(f_u = -g_v \& f_v = g_u)$.	(05)
	c)	Find the image of Gauss map for $\sigma(u, v) = (u, v, u^2 + v^2), \forall u, v \in R$. OR	(04)
Q-5	a)	State and prove Meusnier's theorem.	(05)
	b)	Compute surface area of sphere of radius r .	(05)
	c)	Let σ be a surface patch of an oriented surface with the unit normal \overline{N} then prove that $\overline{N}_{u}\sigma_{u} = -L$, $\overline{N}_{u}\sigma_{v} = -M$ and $\overline{N}_{v}\sigma_{v} = -N$.	(04)
Q-6		Attempt all questions	(14)
C	a)	Calculate second fundamental form of sphere.	(06)
	b)	State Gauss – Bonnet theorem. Prove that the sum of interior angles of a regular	(05)
	,	$n - \text{gon on a plane is } (n - 2)\pi$	
	c)	Let σ be a regular surface patch. Find Γ_{11}^1 . OR	(03)
Q-6		Attempt all Questions	
	a)	Compute Gaussian curvature and mean curvature of the surface $z = f(x, y)$ where <i>f</i> is smooth function.	(06)
	b)	Compute the principal curvature on the surface $\sigma(u, v) = (u, v, uv)$.	(05)
	c)	Prove that any geodesic has a constant speed.	(03)

